Поиск в словарях
Искать во всех

Большая советская энциклопедия - ссср. технические науки5

 

Ссср. технические науки5

ссср. технические науки5
Исследованы физико-химические основы металлургических процессов и на этой базе разработаны способы интенсификации металлургического производства, усовершенствованы технологические процессы и созданы новые. Существенно расширилась металлургическая база страны. Наряду с Югом, Уралом и Центром страны металлургические заводы создавались в Западной и Восточной Сибири, в Казахстане, Узбекистане, Грузии, Азербайджане и на Дальнем Востоке. В крупную базу по производству металла превратились районы Севера и Северо-Запада. Большую роль в реконструкции и строительстве предприятий металлургии сыграл Государственный институт по проектированию металлургических заводов (Гипромез), основанный в Ленинграде в 1926. В 1930 институт создал проект типовой доменной печи объемом 930—1000 м3. С 1936 по проекту Гипромеза строились уникальные по тому времени доменные печи объемом 1300 м3, а затем 2000 м3. В начале 70-х гг. объемы советских доменных печей возросли до 2700—3200 м3, а в 1974 на Криворожском металлургическом заводе им. В. И. Ленина вступила в строй самая мощная в мире доменная печь объемом 5000 м3. СССР располагает крупнейшими в мире мартеновскими печами емкостью до 600 т и двухванными печами той же мощности, кислородными конвертерами емкостью 300—350 т, электропечами емкостью 100 и 200 т. На ряде заводов действуют станы горячей прокатки производительностью до 4 и более млн. т проката в год. Научно-технический прогресс характерен для всех стадий металлургического производства — от подготовки исходных материалов до выпуска готовой продукции. В важнейших горнорудных бассейнах построены обогатит. фабрики. Технический прогресс в обогащении руд характеризуется улучшением применяемых технологических схем и методов, совершенствованием оборудования, увеличением глубины обогащения, обусловленным повышенными требованиями современной металлургии к сырым материалам, а также вовлечением в эксплуатацию все более бедных труднообогатимых руд. Разработаны и внедрены в промышленность технологические схемы, обеспечивающие комплексное использование сырья, в том числе полиметаллических руд. Еще в годы довоенных пятилеток и особенно после войны получило развитие агломерационное производство. Построены крупнейшие в мире агломерационные фабрики. В 60-х гг. освоено производство офлюсованных окатышей из тонкоизмельченного железорудного концентрата. За годы Советской власти возникла и развилась коксохимическая промышленность, освоена прогрессивная технология коксования. Коксохимическое производство развивается в направлении строительства все более мощных коксовых батарей с печами большой емкости, внедрения бездымной загрузки шихты и сухого тушения кокса, механизации и автоматизации обслуживания коксовых печей, совершенствования процессов улавливания и переработки химических продуктов коксования, ассортимент которых включает (70-е гг.) свыше 200 наименований. Наряду с коксовыми печами объемом 30 м3 и высотой 5—6 м сооружаются печи объемом более 40 м3 и высотой 7 м. Годовая производительность коксовой батареи из 65 таких печей превышает 1 млн. т кокса. Индустриализация страны, быстрое развитие черной металлургии и др. отраслей народного хозяйства обусловили форсированное наращивание мощностей по производству огнеупоров. В дореволюционной России производство огнеупоров носило полукустарный характер. Многие виды огнеупорных изделий (например, для доменных и коксовых печей) импортировались. К концу 30-х гг. нужды страны почти полностью обеспечивались отечеств. огнеупорами. В годы Великой Отечественной войны 1941—45 около половины предприятий огнеупорной промышленности были разрушены. Их восстановление сопровождалось техническим перевооружением, особенно усилившимся в 60—70-х гг. Благодаря научным исследованиям, проводимым учеными совместно с работниками огнеупорной промышленности, повысилось качество изделий, увеличился их ассортимент, освоено производство ряда новых огнеупоров (смолосвязанных для кислородных конвертеров, плотных каолиновых для шахт доменных печей, высокоглиноземистых, высокоплотных динасовых, периклазо-шпинелидных, изделий для установок вакуумирования, непрерывной разливки стали и др.), расширилась сырьевая база. Решающим звеном в интенсификации доменного производства явилось применение кислорода и природного газа. Опытные плавки с использованием дутья, обогащенного кислородом, были начаты в СССР на Чернореченском химическом заводе в 30-е гг. В 1940—41 опыты были продолжены на доменной печи Днепропетровского завода металлургического оборудования. В более широких масштабах доменный процесс на кислородном дутье исследовался на опытной печи Новотульского завода в 1948—53. В 1957 на заводе им. Петровского (Днепропетровск) впервые в мире был применен природный газ, что позволило значительно снизить расход кокса. Год спустя по этой технологии работало уже 12 доменных печей. В сочетании с дутьем, обогащенным кислородом, применение природного газа обеспечивает стабильность работы доменной печи и улучшение технико-экономических показателей плавки. Уже в начале 70-х гг. свыше 80% чугуна выплавлялось в СССР с применением природного газа и около 60% — с. использованием кислорода. Большой эффект для роста производительности доменных печей дает повышение давления газов на колошнике и температуры дутья до 1200 °С. В сталеплавильном производстве, как и в доменном, важное средство интенсификации технологического процесса — использование кислорода и природного газа. Первые опыты применения обогащенного кислородом дутья в мартеновской печи были проведены еще до войны на московском заводе «Серп и молот» и горьковском заводе «Красное Сормово». С 1948 эти исследования в более широких масштабах осуществлялись на заводах «Серп и молот», «Запорожсталь», «Азовсталь» и др. Дальнейшие эксперименты, выполненные ЦННИчерметом совместно с заводом «Запорожсталь», показали, что при обогащении дутья мартеновской печи кислородом примерно до 30% и продувке кислородом в период кипения производительность печи может быть повышена на 40—50% с одновременным снижением удельного расхода топлива на 30—40%. К концу 70-х гг. до 80% мартеновской стали будет выплавлено с обогащением дутья кислородом. При использовании в качестве топлива высококалорийного природного газа упрощается конструкция мартеновской печи, облегчаются регулирование и автоматизация теплового процесса. В конце 60-х — начале 70-х гг. на ряде заводов, на базе мартеновских печей созданы высокопроизводительные двухванные печи. Начиная с середины 50-х гг., непрерывно расширяется производство стали в кислородных конвертерах. Н. -и. работы по использованию кислорода в конвертерных процессах в широких масштабах были осуществлены еще в 40-х гг. под руководством И. П. Бардина. В 1956 на заводе им. Петровского был пущен первый в СССР кислородно-конвертерный цех. Применение конвертеров на кислородном дутье обеспечивает высокое качество выплавляемой стали и по сравнению с мартеновским производством экономит капиталовложения на 20—25%, повышает производительность труда на 25—30% и снижает себестоимость металла на 2—4%. Большие успехи были достигнуты в электросталеплавильном производстве. Создание в СССР авиационной, автомобильной и других новых отраслей промышленности обусловило высокие темпы развития электрометаллургии. Уже в 1935 СССР по выплавке электростали вышел на 1-е место в Европе. В начале 70-х гг. в СССР работали сотни дуговых печей, в том числе 13 емкостью 100 и 200 т. Важное направление научно-технического прогресса — увеличение удельной мощности электропечей, в связи с чем заметно повысилась мощность печных трансформаторов. Разработано много научных и технических усовершенствований, обеспечивающих интенсификацию электрометаллургического производства и повышение качества выплавляемого металла: электромагнитное перемешивание металла в ванне печи, автоматическое регулирование положения электродов, совмещение процессов расплавления шихты и окисления примесей, применение кислорода для ускорения процесса плавки и частичного обезуглероживания металла, обработка стали в ковше синтетическими шлаками, аргонокислородная продувка металла в ковше и др. Большое внимание уделяется проблеме рафинирования расплавленной стали после выпуска ее из печи. Еще в 1940—41 под руководством А. М. Самарина были разработаны принципы дегазации металла в ковше под вакуумом. В дальнейшем внепечная вакуумная обработка расплавленных металлов прочно вошла в практику металлургических и машиностроительных заводов, позволяя в 2—3 раза уменьшить содержание водорода, кислорода, азота и неметаллических включений в слитках, идущих для производства изделий ответственного назначения. Развитие науки и техники позволило в 60-х гг. использовать в электрометаллургии новые процессы — плавку стали и сплавов в высокочастотных индукционных печах, дуговую и индукционную плавку в условиях вакуума, электрошлаковый переплав (разработанный в СССР учеными Института электросварки им. Е. О. Патона), а также комбинированные процессы. Разработаны и внедрены в промышленность прогрессивные способы получения высококачественных сталей и специальных сплавов — переплав в электроннолучевых и плазменнодуговых печах. Металл, полученный этими способами, характеризуется высокой однородностью, низким содержанием серы и неметаллических включений, что повышает срок службы и степень надежности изготовленных из него изделий. Все шире применяется процесс непрерывной разливки стали, имеющий очевидные преимущества перед разливкой в изложницы; разработка этого процесса осуществлялась в 40-х гг. под руководством И. П. Бардина. Получает распространение совмещение процессов непрерывного литья и прокатки. Наряду с совершенствованием доменного процесса ведутся работы по созданию и внедрению промышленных способов прямого получения железа. Большое значение для развития черной металлургии имеет проводимая в СССР разработка непрерывных металлургических процессов и агрегатов для их осуществления. Заметных достижений добилась ферросплавная промышленность, созданная за годы Советской власти. Сооружен ряд заводов, постоянно расширяется сортамент выпускаемой продукции, совершенствуется технология производства ферросплавов, улучшается их качество. Разработаны и построены закрытые дуговые печи, внедрено различное вспомогательное оборудование. В результате усовершенствования технологических процессов, их интенсификации снизился удельный расход электроэнергии при выплавке различных сплавов, улучшилось использование установленной мощности. Значительные работы проведены на ферросплавных заводах по механизации трудоемких процессов. Механизирована загрузка шихты в печи, на ряде заводов установлены разливочные машины ленточного типа. А. С. Федоров. Цветная металлургия — одна из ведущих отраслей промышленности, в значительной мере определяющая технический прогресс всего народного хозяйства. История добычи руд и получения из них цветных металлов в районах Урала, Алтая и Сибири насчитывает много столетий. Советская цветная металлургия зародилась одновременно с разработкой плана ГОЭЛРО. Восстановление разрушенных Гражданской войной и интервенцией предприятий цветной металлургии, в первую очередь по производству меди, свинца, цинка, сопровождалось их реконструкцией на основе достижений науки и техники, с использованием научных трудов А. А. Байкова, В. Я. Мостовича, Г. Г. Уразова и др. Отражат. плавка медных концентратов, шахтная плавка свинцовых руд, электролиз металлов были основными направлениями развития технологии производства в цветной металлургии. В годы довоенных пятилеток в СССР были созданы алюминиевая, никель-кобальтовая, вольфрамомолибденовая, твердосплавная, магниевая подотрасли цветной металлургии. Ведущую роль в проектировании и строительстве новых предприятий по производству цветных металлов на основе прогрессивных технологических схем выполнили организованные в 20— 30-е гг. научно-исследовательские и проектные институты Механобр, Гинцветмет и Гипроцветмет. В дальнейшем было создано около 40 специализированных институтов цветной металлургии. На технический прогресс в медной, свинцово-цинковой, вольфрамомолибденовой промышленности решающее влияние оказало развитие флотационного метода обогащения руд с получением медных, свинцовых, цинковых, вольфрамовых и молибденовых концентратов, а также развитие процессов агломерации концентратов и обжига их в кипящем слое перед металлургической переработкой. Разработка технологии и проектирование новых заводов по производству меди, свинца, цинка проводились институтами Гипроцветмет, Гинцветмет, Унипромедь, ВНИИцветмет, Казгипроцветмет. Большой вклад в развитие заводов по производству этих металлов внесли Ф. М. Лоскутов, В. А. Ванюков, А. Н. Вольский, В. И. Смирнов, Д. М. Чижиков и др. Развитие производства отечественного алюминия и магния связано с именами Н. П. Асеева, П. П. Федотьева, П. Ф. Антипина, А. И. Беляева, В. А. Пазухина. В предвоенные годы научно и практически определились способы производства глинозема из бокситов, методы получения алюминия и его сплавов. В СССР впервые в мире была разработана технология и осуществлена комплексная переработка нефелинов и другого небокситового сырья на глинозем, содопродукты и цемент. Перед Великой Отечественной войной 1941—45 по проектам Всесоюзного научно-исследовательского и проектного института алюминиевой, магниевой и электродной промышленности (ВАМИ) впервые в стране были освоены электролизеры с самообжигающимися анодами, а в послевоенные годы созданы мощные электролизеры с верхним токоподводом. Успешному техническому развитию производства никеля и кобальта содействовали работы института Гипроникель, организованного в 1934. Крупный вклад во внедрение флотационного разделения медно-никелевого файнштейна внес И. Н. Масленицкий. Значение производства никеля и других легирующих металлов (кобальта, вольфрама, молибдена) особенно возросло в годы Великой Отечественной войны 1941—45. Развитию производства платины и платиновых металлов способствовали работы И. И. Черняева. И. Н. Плаксин разработал основы амальгамационных процессов извлечения золота из руд и продуктов обогащения, создал современную теорию планирования золотых руд. В 50-х гг. началось интенсивное развитие отечеств. промышленности по производству редких и редкоземельных металлов, полупроводниковых материалов. С институтом Гиредмет, научным руководителем которого почти 30 лет был Н. П. Сажин, связано решение таких проблем, как освоение производства монокристаллов германия, создание методов переработки сурьмяных и висмутовых руд, производство титана, циркония и ниобия, применение в производстве редких металлов электроннолучевой и плазменной плавки. Большой вклад в разработку технологии получения и в освоение производства полупроводниковых материалов внесли Б. А. Сахаров, К. А. Большаков, Е. М. Савицкий. Рост производства и высокие требования к чистоте материалов обусловили создание новых специальных методов, таких, как хлорная технология, процессы сорбции и экстракции, водородное восстановление, электроннолучевые процессы, методы кристаллофизической очистки и выращивания монокристаллов. Создание титановой промышленности в первые послевоенные годы основано на развитии институтами Гиредмет и ВАМИ техники и технологии производства металлического титана из ильменитовых концентратов, на разработке и внедрении шахтных электропечей и печей большой производительности для хлорирования в расплаве солей. По мере увеличения производства цветных металлов, совершенствования техники и технологии расширялось рациональное использование природных ресурсов, вовлекались в эксплуатацию месторождения с более низким, но рентабельным содержанием металлов в рудах. Важное значение приобрели работы по комплексному использованию сырья. Значительное развитие получили автоклавные и сорбционные процессы, работы по синтезу сорбентов и экстрагентов для различных процессов цветной металлургии и по созданию промышленной аппара
туры для непрерывной противоточной сорбции из пульп и растворов. Разработка и внедрение гидрометаллургических схем и совершенствование пирометаллургических процессов на основе применения кислорода, электротермии, природного газа способствовали повышению комплексного использования сырья и интенсификации производства. В частности, по разработкам института Гинцветмет осуществлено применение природного газа в металлургии меди и свинца, внедрена кислородно-взвешенная плавка медных сульфидных концентратов. Современный период развития цветной металлургии характеризуется широким внедрением технологических схем переработки руд и концентратов, обеспечивающих комплексное использование сырья. Исследованы и осваиваются комбинированные автогенные процессы для переработки сложных медно-цинковых, свинцово-цинковых и других концентратов (кивцэтная плавка и др.). Успешно развиваются электротермические процессы с применением электропечей большой мощности (до 50 Мва). Продолжается внедрение высокоэффективных методов хлорной металлургии и гидрометаллургических процессов. Для получения тонкодисперсных чистых металлов, их соединений и сплавов, в особенности тугоплавких, разрабатываются процессы с применением низкотемпературной плазмы. Особое место при создании новых технологических процессов занимают вопросы рационального использования сырья и охраны окружающей среды, разработка и внедрение технологических схем и процессов, не имеющих промышленных стоков и выбросов в атмосферу. П. Ф. Ломако. Завершающее звено производства в черной и во многих отраслях цветной металлургии и в машиностроении — прокатка. Прокатное производство в России начало развиваться с конца 19 в. В 1913 работало 205 прокатных станов разного назначения, но в основном это были мелкие станы устаревших конструкций. В середине 20-х гг. курс на реконструкцию промышленности и индустриализацию страны потребовал создания ряда конструкторских металлургических учреждений. В 1924 при ВСНХ под руководством В. Е. Грум-Гржимайло было организовано Государственное бюро металлургических и теплотехнических конструкций (с 1930 «Стальпроект»), вскоре разработавшее первый проект сортового прокатного стана с тремя рабочими клетями-трио, а также ряд нагревательных печей для прокатных станов. С 1926 проекты прокатных цехов и станов разрабатывались также в Гипромезе. В конце 20-х — начале 30-х гг. Старокраматорский завод создал станы для прокатки легированных сталей, которые были установлены на заводах «Электросталь», «Серп и молот» и др. В 1932 на Ижорском заводе были созданы 2 первых советских блюминга, установленные год спустя на Днепродзержинском и Макеевском металлургических заводах. Производство прокатных станов и другого тяжелого металлургического оборудования значительно расширилось после ввода в строй крупнейших заводов тяжелого машиностроения — Уральского (УЗТМ) и Новокраматорского (НКМЗ), а также после реконструкции Ижорского завода. В 1945 организовано Центральное конструкторское бюро металлургического машиностроения (ЦКБММ), реорганизованное затем во Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения (ВНИИМЕТМАШ). Этот институт, возглавляемый А. И. Целиковым, в 50—60-х гг. создал ряд конструкций прокатных станов для новых технологических процессов — производства тонких и бесшовных труб, листов перем. толщины, ребристых труб, профильного металла периодического сечения, винтов, шаров, втулок и т. д. институтом разработаны также станы значительно более высокой производительности по сравнению с применявшимися (в т. ч. заготовочные непрерывные станы, среднесортные, трубопрокатные, трубосварочные). Совместно с Электростальским заводом тяжелого машиностроения (ЭЗТМ) созданы непрерывные трубопрокатные станы, производительность которых в 3 раза выше, чем существовавших ранее, и трубосварочный стан со скоростью выхода трубы до 20 м/сек, т. е. в 2,5 раза выше, чем было до этого в мировой практике. Крупное достижение ВНИИМЕТМАШа и ЭЗТМ — создание принципиально нового трубопрокатного агрегата со станом «тандем», что позволило резко повысить качество труб и автоматизировать процесс. В 60-е гг. начато создание литейно-прокатных агрегатов, совмещающих процессы непрерывного литья и прокатки. Такие агрегаты применяются как в черной, так и в цветной металлургии. Прокатное производство в СССР продолжает развиваться в направлении улучшения качества и расширения сортамента продукции. Прокатные цехи оснащаются высокопроизводительными станами и отделочным оборудованием, широко применяется автоматический контроль работы механизмов прокатных станов, расширяется термическая обработка проката с целью повышения его прочности. Станы оборудуются средствами комплексной автоматизации с применением ЭВМ. Разрабатываются методы неразрушающего контроля качества металла. Все большую роль играют непрерывные и полунепрерывные процессы прокатки. Более 85% тонкого листа, например, выпускается на широкополосовых станах горячей прокатки непрерывного и полунепрерывного действия. Значительный экономический эффект дает производство листового и полосового металла с защитными покрытиями методами лужения, горячего цинкования, хромирования и др. Налажено производство 2-слойного (биметаллического) проката. Выпускается широкий ассортимент коррозионностойких, антифрикционных, электротехнических и других биметаллов. Большой прогресс достигнут в области производства труб. Если до Великой Отечественной войны 1941—45 трубные заводы и цехи оснащались главным образом импортным оборудованием, то в послевоенные годы все новые трубные станы изготовлены отечеств. машиностроительными заводами по советским проектам. К числу наиболее совершенных агрегатов относятся непрерывный трубопрокатный агрегат 30—102, трубопрокатный агрегат с трехвалковым станом, непрерывные агрегаты печной сварки труб, агрегаты для производства сварных труб большого диаметра, новые трубоэлектросварочные станы, станы холодной прокатки и др. Большие успехи достигнуты в области создания нагревательного оборудования для трубного производства: внедрены кольцевые методические печи и печи непрерывного скоростного нагрева труб. Организовано производство высокопрочных электросварных труб большого диаметра для магистральных газо- и нефтепроводов, труб из нержавеющей и легированной стали, а также покрытых цинком, алюминием и др. металлами. По степени использования мощностей, производительности трубопрокатных агрегатов и выпуску труб Советский Союз опережает др. страны, в том числе и такие технически развитые, как США, Великобритания, ФРГ, Япония. Научно-технический прогресс непрерывно выдвигает новые требования к качеству металла и его сортаменту. Для решения этих задач необходимо освоить прокатку многих принципиально новых изделий, создать новые процессы прокатки и экономичные специализированные станы для их реализации. Периодические издания: «Сталь» (с 1941), «Металлург» (с 1956), «Цветные металлы» (с 1926), «Заводская лаборатория» (с 1932), «Кокс и химия» (с 1931), «Огнеупоры» (с 1933) и др. См. также Металлургия, Черная металлургия, Цветная металлургия. А. С. Федоров. Строительная наука и техника В дореволюционной России строительная наука характеризовалась сравнительно высоким уровнем развития. Об этом свидетельствуют возведенные в конце 19 — начале 20 вв. весьма сложные в техническом отношении инженерные сооружения, некоторые промышленные объекты, глубокие по содержанию оригинальные исследования в области строительной механики и сопротивления материалов. Отечественная строит. наука этого периода выдвинула ряд крупных ученых. Мировую известность приобрели труды Д. И. Журавского по вопросам прочности балок при изгибе, Х. С. Головина в области теории упругости, Ф. М. Ясинского по устойчивости элементов строит. конструкций, послужившие основой для разработки современных нормативных документов. В фундаментальных исследованиях А. Н. Крылова, И. Г. Бубнова, Б. Г. Галеркина были поставлены и решены принципиально новые задачи строит. механики. Результаты исследовательской инженерной деятельности А. Р. Шуляченко, И. Г. Малюги и Н. А. Белелюбского стали основополагающими для развития и совершенствования теории и технологии цемента, бетона и железобетона. В дореволюционные России не было, однако, научных учреждений по строительству, проблемы строительной науки исследовались преимущественно кафедрами вузов и отдельными высококвалифицированными инженерами-практиками. Для выполнения задач, вставших перед молодым Советским государством в области строительства, необходимо было наряду с организацией планомерной подготовки инженерно-технических кадров строительного профиля создать отраслевые научно-исследовательские организации, способные решать проблемы, связанные с восстановлением и развитием народного хозяйства. В 1918 по инициативе В. И. Ленина был организован Научно-экспериментальный институт путей сообщения, затем были созданы Государственный экспериментальный институт силикатов, Институт минерального сырья и Керамический институт. Организация планомерных исследований в первую очередь по этим вопросам диктовалась насущными потребностями народного хозяйства: необходимо было в кратчайший срок восстановить железные дороги и ликвидировать острый недостаток в стройматериалах. Важным этапом в создании крупных научных центров по строительству явилась организация в 1927 Государственного института сооружений (ГИС), который объединил исследования по всем основным отраслям строительной науки. Создание этого института (впоследствии преобразованного в ЦНИПС — Центральный НИИ промышленных сооружений), в состав которого вошли крупнейшие ученые-строители различных специальностей, позволило выполнить исследования по важнейшим проблемам строительства, обеспечить тесную связь их с практикой (на базе ЦНИПС в дальнейшем был организован ряд основных научно-исследовательских институтов в области строительства). Развернулись работы по строительной механике, механике грунтов, по изучению теплофизических свойств стройматериалов, созданию легких заполнителей для бетонов и растворов на основе отходов «горячих» производств (главным образом котельных и доменных шлаков) и др. К крупным достижениям советской строительной науки относятся разработанные в 20-х гг. смешанный метод расчета статически неопределимых систем (А. А. Гвоздев) и кинематический метод построения линий влияния (И. М. Рабинович). Для восстановительного периода было характерным преимущественное использование в строительстве деревянных и каменных конструкций, что объяснялось острым недостатком металла в стране. Деревянные фермы с пролетом 12—18 м (а в отдельных случаях до 40 м) применялись при строительстве большинства промышленных зданий. Строительные работы выполнялись сезонно (лишь в теплое время года), в основном кустарными методами, с применением простейших средств механизации (кранов-укосин, шахтных подъемников и т.п.). Однако уже в этот период началось внедрение новых технических решений строительных конструкций, в том числе стальных, и более совершенных методов производства строительных работ. В частности, существенно изменились методы изготовления деревянных конструкций. Уже в 1923 на строительстве павильонов 1-й Всесоюзной сельскохозяйственной выставки в Москве применялись деревянные фермы, рамы и арки с соединениями новых типов — на кольцевых шпонках. При строительстве здания Центрального аэрогидродинамического института (ЦАГИ) вместо брусчатых балок были применены более экономичные дощато-гвоздевые двутавровые балки и рамы с перекрестной стенкой. Наряду с обычной кирпичной кладкой использовалась кладка из пустотных шлаковых камней, иногда довольно крупных размеров; нашли применение несущие железобетонные конструкции при возведении промышленных зданий. Т. о., восстановительный период явился начальным этапом создания и внедрения новой строительной техники. Благодаря деятельности научных центров строительная наука успешно справилась с задачами восстановительного периода и к концу 20-х гг. была уже достаточно подготовлена к решению задач, предусмотренных 5-летними планами. Реорганизация строит. дела началась в годы первых пятилеток. Необходимость индустриализации страны в короткие сроки, неуклонное возрастание объемов капитального строительства при ограниченных ресурсах основных стройматериалов — стали и цемента — потребовали от строительной науки изыскания наиболее рациональных конструктивных форм зданий и сооружений, создания эффективных конструкций и материалов. В соответствии с практическими потребностями строительства основные исследования в области строит. механики в 30-е гг. были посвящены изучению стержневых систем. В частности, в этот период усовершенствованы и упрощены методы расчета рам, обусловившие повышение надежности сооружений. Тогда же разработаны теория расчета тонкостенных стержней открытого профиля (В. З. Власов) и теоретические основы стесненного кручения тонкостенных стержней замкнутого профиля (А. А. Уманский), что оказало большое влияние на дальнейшее развитие строительной механики тонкостенных пространственных систем. Большое внимание уделялось разработке методов расчета пластинок и оболочек (Галеркин, Власов, П. Ф. Папкович и др.). Была усовершенствована теория расчета балок и плит на упругом основании (Крылов, Н. М. Герсеванов, Б. Н. Жемочкин и др.). Основная задача в области механики грунтов состояла в создании методов расчета и возведения фундаментов на различных грунтах, в том числе мерзлых, просадочных, илистых и др. Основой для разработки этих методов послужили работы Герсеванова и Н. А. Цытовича. В 1934 был опубликован первый в мире курс механики грунтов, в котором широко использовались методы теории упругости. Необходимость освоения природных ресурсов Сибири и Дальнего Востока ускорила исследования вечномерзлых грунтов, завершившиеся разработкой основ механики мерзлых грунтов. Результатом исследований в области строит. физики явилась разработка теоретических и практических основ строит. теплотехники и рациональных методов проектирования ограждающих конструкций. Исследования в области металлических конструкций позволили не только повысить допускаемые напряжения и усилия, но и дифференцировать их в зависимости от вида воздействий на конструкции. Наряду с этим началось изучение пластической стадии работы металлических конструкций. Необходимость переноса места изготовления стальных конструкций со строит. площадки на завод, обусловленная индустриализацией строительства, выдвинула на первый план вопрос об обеспечении не только экономичности конструкций, но и их технологичности. Это потребовало разработки научных основ типизации и унификации металлических конструкций. Важным этапом в развитии строит. науки было предложение А. Ф. Лолейта (1931) о переходе от расчета железобетонных конструкций по упругой стадии к расчету по стадии разрушения. Новый метод расчета, более экономичный и точнее отражавший работу конструкций, был экспериментально обоснован и включен в нормы проектирования. С 1932 начались исследования и разработка предварительно напряженных железобетонных конструкций (В. В. Михайлов и др.), получивших впоследствии широкое распространение. строительство в конце 20-х — начале 30-х гг. ряда общественных зданий с большепролетными покрытиями типа оболочек (планетарий в Москве, театр в Новосибирске и др.) дало толчок к разработке методов расчета и проектирования пространственных железобетонных конструкций (П. Л. Пастернак и др.), позволяющих при малом расходе материалов перекрывать большие пролеты. Если до 30-х гг. использовался в основном монолитный железобетон, то в период довоенных пятилеток требования индустриализации строительства и необходимость ликвидации его сезонности привели к тому, что наиболее распространенным методом производства строит. работ стал метод монтажа конструкций из элементов заводского изготовления. В начале 30-х гг. ученые института Гипрооргстрой позднее реорганизованного во ВНИИОМС, ныне Центральный научно-исследовательский институт организации, механизации и техпомощи строительству (ЦНИИОМТП) сформулировали основные принципы организации строительства, технологии и механизации строительного производства (М. В. Вавилов, А. В. Барановский и др.). На их основе, с учетом опыта передовых строек, были созданы скоростные и поточно-скоростные методы производства строит. работ, сыгравшие решающую роль в деле интенсификации строительства; были также решены вопросы сокращения затрат тяжелого ручного труда на базе механизации (а затем и комплексной механизации) основных строительно-монтажных работ. К середине 30-х гг. методы расчета каменных конструкций уже осваивались на большом теоретическом и экспериментальном материале (Л. И. Онищик, С. А. Семенцов и др.); были изучены особенности работы каменной кладки и различных видов камня и растворов, а также факторы, влияющие на прочность кладки. Это позволило повысить напряжения в каменных конструкциях и соответственно снизить расход стройматериалов. Исследования прочности кладки, выполненной методом замораживания раствора, обеспечили возможность возведения зданий в зимнее время без применения тепляков. Исследования в области деревянных конструкций (Г. Г. Карлсен и др.) позволили в 30-х гг. значительную часть несущих конструкций зданий и различных сооружений (градирни, эстакады, транспортерные галереи и т. п.) изготовлять из дерева. В годы Великой Отечественной войны 1941—1945 ввиду ограниченных возможностей применения металла и железобетона вновь расширилось использование деревянных и каменных конструкций. Основные усилия научно-исследовательских организаций были направлены на создание норм проектирования конструкций в условиях военного времени, а начиная с 1943 — на разработку рекомендаций по эффективным методам восстановления зданий и сооружений. В послевоенные годы был создан ряд научно-исследовательских институтов строительного профиля в союзных республиках; некоторые из этих институтов стали крупными научными центрами, учитывающими при решении практических задач строительства весь комплекс местных условий (климатические и геологические особенности, сырьевые ресурсы, индустриальная база и др.). Большое научное и практическое значение имеют проводимые республиканскими институтами исследования в области строительной механики, сейсмостойкого строительства, строительных конструкций и материалов (Институт строительной механики и сейсмостойкости АН Грузинской ССР, Институт механики и сейсмостойкости сооружений АН Узбекской ССР, Институт строительства и архитектуры Госстроя БССР и др.). Для конца 40-х — начала 50-х гг. характерно особенно быстрое развитие строительной науки, расширение и углубление ее связей со строит. производством, что было обусловлено необходимостью скорейшего восстановления народного хозяйства, а также огромным объемом капитального строительства. Начался переход к индустриальным методам строительства; развертываются научно-исследовательские работы сначала в области крупноблочного, а затем крупнопанельного домостроения. Примером активного влияния науки на решение народно-хозяйственных задач является комплексная разработка в конце 40-х — начале 50-х гг. основных принципов крупнопанельного строительства, объемно-планировочных и конструктивных решений крупнопанельных жилых домов, методов заводской технологии изготовления крупноразмерных конструкций (панелей), а также способов производства монтажных работ (коллектив ученых во главе с Г. Ф. Кузнецовым), что дало возможность в широких масштабах развернуть крупнопанельное жилищное строительство. Сборный железобетон стал основой индустриализации строительства. Результаты научно-исследовательских работ, в большом объеме развернутых в НИИ бетона и железобетона, позволили улучшить качественные характеристики бетона (Б. Г. Скрамтаев и др.), внедрить предварительно напряженные конструкции, обладающие повышенной жесткостью и трещиностойкостью, использовать эффективные виды арматурной стали. Всесторонние исследования были проведены с целью создания искусств. пористых заполнителей и на их основе — конструктивно-теплоизоляционных, легких и ячеистых бетонов (Н. А. Попов и др.). В 50-х гг. начались разработка и внедрение бетонов специальных видов (гидротехнического, жаростойкого, кислотоупорного и др.), созданы теоретические основы долговечности бетона (В. М. Москвин и др.). Разработаны научные основы и практические рекомендации по ведению бетонных работ при отрицательных температурах (С. А. Миронов, В. Н. Сизов и др.). Большое влияние на развитие форм стальных конструкций оказали достижения в области сварки. Изучение прочности сварных соединений, особенно исследования Института электросварки им. Е. О. Патона, а также разработка методов автоматической сварки обеспечили ее надежность и технологичность. Сварка стала основным способом соединения элементов стальных конструкций. При этом заметно упростилась форма конструкций, снизились их масса и трудоемкость изготовления. В 50-х гг. начались теоретические и экспериментальные исследования клееных деревянных конструкций, послужившие основой создания индустриальных методов изготовления таких конструкций. С конца 60-х гг. конструкции из клееной древесины уже применялись в значит. объеме, преимущественно в сельскохозяйственных зданиях и промышленных зданиях с химически агрессивной средой. В строительной механике в связи с требованиями облегчения и повышения гибкости конструкций интенсивно разрабатывались вопросы устойчивости (А. Ф. Смирнов, А. С. Вольмир, В. В. Болотин и др.). Задача более полного использования прочности материалов обусловила необходимость исследования работы конструкций за пределами упругости и разработку соответственных методов расчета. Весьма плодотворным оказался метод предельного равновесия, разработанный на основе фундаментальных исследований Гвоздева. Для решения широкого класса задач нашла применение теория расчета составных стержней (А. Р. Ржаницын). Получили развитие методы расчета оболочек (Власов, А. Л. Гольденвейзер и др.). Методы расчета каркасных и крупнопанельных зданий, разработанные как для обычных, так и для особых условий возведения (районы сейсмической активности, просадочные грунты, горные выработки и т.п.), обеспечили возможность массового строительства этих зданий. Разработаны и внедрены методы расчета строит. конструкций на динамические нагрузки от машин и оборудования новых видов, ветра, морского волнения и т. п. Создана теория виброизоляции и виброгашения. Достижения динамики сооружений были использованы при разработке методов расчета сооружений на сейсмические воздействия (К. С. Завриев и др.). Значит. развитие получили исследования в области статистических (вероятностных) методов оценки надежности конструкций и сооружений (Н. С. Стрелецкий, Болотин). Крупнейшим достижением советской строительной науки, получившим признание во всем мире, является создание принципиально нового метода расчета конструкций по предельным состояниям (Стрелецкий, В. М. Келдыш, Гвоздев, И. И. Гольденблат и др.). Введение этого метода в строительные нормы и правила в качестве основополагающего расчетного принципа ознаменовало собой переход к высокоэкономичному проектированию конструкций. Применение нового метода обеспечивает необходимую надежность сооружений и существенно снижает расход материалов. Успешному развитию строит. механики во многом способствовало внедрение средств вычислит. техники. Применение ЭВМ для решения сложных и трудоемких задач началось в 60-х гг., оно обусловило развитие численных методов расчета и широкое использование в расчетной практике теории матриц (А. Ф. Смирнов). Без применения ЭВМ и разработки необходимого математического аппарата оказалось бы невозможным не только решение, но и сама постановка многих задач современной строительной механики. Большое достижение в области механики грунтов — теоретическое обоснование новой расчетной схемы основания, точнее отражающей реальные условия работы грунта. С помощью этой модели были разработаны экономичные методы расчета свайных фундаментов в мерзлых грунтах и оснований под опорами глубокого заложения. В области строит. физики проведены комплексные исследования тепло- и звукоизоляции и долговечности ограждающих конструкций для новых типов зданий, в том числе крупнопанельных, что позволило обеспечить высокую эксплуатационную надежность последних. Основная задача современной строительной науки — изыскание резервов снижения расхода материалов, а также стоимости, трудоемкости и сроков строительства при одновременном повышении качества конструкций, зданий и сооружений. Значительную роль в решении этой задачи отводится методам расчета зданий и сооружений как единых пространственных систем. В 70-х гг. начата разработка таких методов (с использованием ЭВМ). Получают дальнейшее развитие метод предельных состояний и теория надежности, что создает необходимые условия для перехода к расчету зданий и сооружений вероятностными методами. Повышение качественных характеристик бетона в железобетонных конструкциях, создание быстротвердеющих бетонов, не требующих тепловой обработки для ускорения их твердения, увеличение объема применения и улучшение свойств легких и ячеистых бетонов — одна их первоочередных задач строит. науки. В 10-й пятилетке в строительстве все шире применяются предварительно напряженные и комбинированные конструкции, внедряются легкие и облегченные конструкции из клееной древесины, асбестоцемента, пластмассы, легких сплавов и др. Международные связи Советского Союза в области строительства осуществляются как по линии непосредственного двустороннего сотрудничества с зарубежными странами, так и в форме участия советских ученых в деятельности международных организаций по строительству (международные общества механики грунтов и фундаментостроения, международные ассоциации по антисейсмическому строительству, международные федерации по предварительно напряженному железобетону). Ряд важных исследований проводится советскими специалистами в рамках СЭВ. Периодические издания: «Бетон и железобетон» (с 1955), «Механизация строительства» (с 1939), «Основания, фундаменты и механика грунтов» (с 1959), «Строительная механика и расчет сооружений» (с 1959), «Строительные материалы» (с 1955) и др. См. также Полносборное строительство, Строительство. И. Г. Васильев, Г. Ш. Подольский.
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины